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a b s t r a c t

This paper is concerned with the theoretical analysis of time harmonic dynamics of

compound elastic pipes with and without internal fluid loading. Compound pipes are

assembled as a sequence of segments, each of which has a constant curvature. As a

prerequisite for the wave propagation analysis, dispersion equations are solved, Green’s

segment. The governing equations of wave motion of a compound pipe are obtained as

an ensemble of the boundary integral equations for individual segments and the

continuity conditions at their interfaces. The proposed methodology is validated in

several benchmark problems and then applied for analysis of the periodicity effects. The

results obtained for piping systems with a variable number of identical curved segments

are put into the context of the classical Floquet theory. Brief parametric studies suggest

that the curved inserts can be employed as a tool for the passive control of wave

propagation in fluid-filled pipes, and their stop band characteristics may be tailored to

reach desirable attenuation levels in prescribed frequency ranges.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Spatial pipe structures are widely used in virtually all industrial and domestic applications, from gas- and oil-
transporting pipelines to household heating and water supply systems. A by-product of the operational effect of pumps and
valves on such structures is generation of vibro-acoustic energy, which may be transmitted in the pipeline over a long
distance and emit undesirable noise, for example, from a distant radiator. Spatial piping systems are typically composed of
straight and curved segments, and analysis of the vibro-acoustic properties of curved pipes is requested to predict behaviour
of assembled compound structures. Wave propagation in straight pipes with and without fluid inside is a well established
area of research, whereas linear dynamics of curved pipes has been considered in fewer publications. This paper is focused
at modelling wave propagation phenomena in curved pipes individually and in their combinations with other curved and
straight elements, including periodicity effects. It reports results of the work that has been split into the four subtasks:
�
 Derivation of the governing equations for linear time harmonic dynamics of planar curved fluid filled pipe segments in
their in-plane and out-of-plane motion.

�
 Assessment of the roles of internal fluid loading parameters, when the fluid has a relatively slow flow rate and low

internal pressure, followed by simplification of the governing equations.
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Nomenclature

Ai fluid-filled area
Ap solid area of the pipe cross section
cf sound speed in fluid
cs speed of the plane dilatation wave in the

material of a pipe
do the outer diameter of a pipe (characteristic

length scale)
E Young’s modulus
G Shear modulus
h wall thickness of a pipe
J axial moment of inertia
Jp polar moment of inertia
k wavenumber
K non-dimensional wavenumber
pi internal pipe pressure
q external distributed force/moment
Q non-dimensional external distributed force/

moment
R radius of curvature of a pipe
s the coordinate along pipe centreline
S the non-dimensional coordinate along pipe

centreline
t time

u displacement along x-axis
U non-dimensional displacement along x-axis
Uf internal fluid flow speed
v displacement along y-axis
V non-dimensional displacement along y-axis
w displacement along z-axis
W non-dimensional displacement along z-axis
a rotation around x-axis
A rotation around x-axis as function of s/do

b rotation around y-axis
B rotation around y-axis as function of s/do

g rotation around z-axis
! rotation around z-axis as function of s/do

e ratio between do and R

ez strain along z-axis
Z material loss factor
n Poisson’s ratio
rf mass density of the fluid
rs mass density of the material of a pipe
o circular frequency
O non-dimensional frequency
Note: The definition of local pipe cross section

coordinate systems and sign conventions for
forces and moments, is giving in Appendix A.
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�
 Derivation of Green’s matrices and boundary integral equations for a curved pipe segments in their time harmonic in-
plane and out-of-plane motion.

�
 Application of the Floquet theory for predicting location of frequency stop bands in an infinite periodic structure

composed of alternating straight and curved pipe segments and analysis of the energy flux in a compound structure
containing a moderate number of the same repeated substructures inside and outside the predicted stop and pass
bands.

The first two items in the list above are seen by the authors as a necessary preliminary work, requested for the
consistency of the paper. To the best of the authors’ knowledge, the last two items have not yet been thoroughly studied in
the literature and, therefore, these aspects present the novelty of this contribution.

The organisation of the paper into sections reflects the sequel of these tasks. Besides, the brief literature survey needed
to put reported results into the existing framework is presented in Section 2.

2. The models and the tools

The purpose of the brief literature survey reported in this section is to put the model and the methodology we employ
into the context of existing state of the art in the field.

2.1. Modelling of curved pipes with and without internal fluid loading

In what follows, we discuss modelling of pipes of the circular cross-section with their centre-line being of the circular
shape. Then, depending on the wave length scale (which is controlled by the excitation frequency), a pipe may be modelled
either as an elastic toroidal shell or as a slender curved beam. Alongside, the quiescent or flowing fluid inside a pipe may be
modelled either as a continuum with effects of viscosity and compressibility taken into account or as a lumped added
mass.

Obviously, a model of the elastic toroidal shell filled in with flowing viscous fluid is the most general one. To the best of
our knowledge, no publications dealing with analysis of propagation of linear waves in this coupled solid–fluid wave guide
are available. However, in most of practically meaningful situations, substantial simplifications in modelling the shell and
the fluid can reliably be made, which reduce a pipe to a Bernoulli–Euler curved beam with a ‘plug flow’ of fluid inside. This
model has been extensively employed in the literature, and its excellent exposition can be found in the classical text by
Paı̈doussis [1]. In particular, this formulation has been used by Misra et al. [2,3]. We have chosen this model as a starting
point for analysis and it is elaborated in Section 3. The governing equations for the in-plane wave motion in a curved beam
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without internal fluid loading can also be found in Walsh and White [4], Kang et al. [5], and Lee et al. [6]. The discussion of
these models in comparison with the model we have employed is presented in Section 4.

Asymptotic reduction of equations of motion of an elastic toroidal shell to those of a curved beam and the assessment of
validity ranges of this model lies beyond the scope of the present paper. It should just be pointed out that such an
assessment for a simpler case of a straight elastic pipe (a cylindrical shell with internal fluid loading) may be found, for
instance, in Sorokin et al. [7]. It is realistic to expect that for a reasonably slender circular pipe the range of applicability of
an elementary beam model should not be much different than for a straight pipe with the same cross-section.

2.2. The methodology of analysis of time harmonic dynamics of curved pipes

Governing differential equations of elastic wave propagation in and vibrations of curved pipes have a unique and exact
solution in the form of linear combination of exponential functions. Several alternative methods employ this exact solution
in different formats to consider free or forced vibrations of uniform or non-uniform curved and/or straight beams (pipes).
The most prominent difference between these methods is the way to incorporate evanescent waves. Standard spectral
element methods in various modifications – Doyle [8], Banerjee [9], Lee et al. [10], Lee [11] – is based on the derivation of
the dynamic stiffness matrix, which is subsequently employed for analysis of dynamics of structures exactly in the same
way as the conventional stiffness matrix is used for static analysis in the finite element method. In these references, the
transfer matrix is set up with all exponential functions used, and its elementary transformation yields the requested
dynamic stiffness matrix. This straightforward approach is perfect for numerical implementation in degenerate cases
when no evanescent waves are supported by the wave guide (the axial wave in a straight rod or pipe). However, as soon as
evanescent waves are supported on top of the travelling ones (flexural waves in a straight beam or a pipe), this approach
leads to numerical instabilities in analysis of dynamics of slender beams. The instabilities are caused by computing
of exponents of very large positive arguments, inherently involved in the derivation of the transfer matrix. This
drawback in employing the transfer matrix for derivation of the dynamic stiffness matrix has been noticed, and several
authors – see, for instance, Kang et al. [5] and Lee et al. [6] – have suggested a more elaborated technique to obtain the
dynamic stiffness matrix, which is based on the proper account on reflection, transmission and propagation of waves of all
types.

Naturally, approximate methods (Ritz method, Galerkin method, and, in particular, finite element method) are also
widely used for analysis of free and forced vibrations of uniform and compound piping systems. The detailed survey of
literature, where these methods have been employed lies beyond the scope of this paper. However, it should be pointed
out that the classical finite element methodology for analysis of dynamics of curved beams was developed already in Davis
et al. [12]. In several examples reported in Sections 4 and 5, we refer to the finite element analysis by commercially
available software ANSYS11 for benchmarking and validating the codes, which implement exact solutions we have
obtained by the boundary integral equations method.

2.3. Power flow analysis and calculations of eigenfrequencies of curved beams

Analysis of linear dynamics of curved beams can be performed in two formulations: in terms of travelling waves and
related energy transfer in infinite and/or semi-infinite structures and in terms of standing waves in structures of the finite
length. Of course, the issues of the energy transfer become relevant also for finite structures as soon as their forced
vibrations are addressed with the material losses taken into account.

It would be a difficult but not particularly practical task to survey very many references, where eigenfrequencies and
eigenmodes of vibrations of curved beams or pipes have been analysed. Perhaps, it could be just noticed that such an
analysis has become fairly straightforward, if not trivial, with commercially available finite elements codes. On the other
hand, power flow in compound curved beams has been studied in fewer references. The excellent study of power
transmission (or power flow) in homogeneous curved beams performing the in-plane motion is presented in Walsh and
White [4], whereas the energy flow in compound planar structures consisting of curved and straight segments is studied in
the already mentioned references Kang et al. [5] and Lee et al. [6]. All these three references are concerned only with the in-
plane wave motion of curved beams, but it is a fairly straightforward matter to replicate the results for the out-of-plane
wave motion of curved beams, which is obviously similar to, but completely uncoupled from the in-plane motion.

Wave motion in a compound beam of finite length can be treated as a superposition of transmitted and reflected
travelling waves, so that the methodology derived for semi-infinite structures can readily be applied for the standing
waves analysis. This is exactly what has been done in Kang et al. [5] and Lee et al. [6]. A helpful literature survey on the
issues discussed in this subsection can be found in the former reference, pp. 19–21.

2.4. Floquet theory and periodicity effects

As is well known, the frequency stop bands exist in an infinitely long wave guide with periodic elements, and the energy
transmission is impossible if the excitation frequency falls into these stop bands. The classical Floquet theory Brillouin
[13]and Mead [14] is conveniently used for calculation of Bloch parameters (or propagation constants), which are all
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complex-valued in stop bands. In a straight elastic pipe, periodicity can be produced by equally spaced supports or inertial
attachments, as described in the comprehensive review Mead [15]. One more type of periodicity, which can also be used in
a straight pipe, is alternation of material properties of its continuous segments, see, for example Sorokin and Ershova
[16,17]. In a compound pipe with curved segments, periodicity can be generated by alternation of their curvature.
Naturally, the model of an infinitely long periodic structure is an idealized one, and predictions obtained by the use of this
model may not be directly applicable for the practical purposes, in particular, to prevent transmission of the vibro-acoustic
energy in pipes by employing a limited number of inclusions.

In recent publications Sorokin and Ershova [16,17] and Sorokin et al. [7], it has been shown that substantial attenuation
effect may be achieved with a small number of periodicity cells inserted in a wave guide. This result is particularly relevant
to studies of wave propagation in piping systems with curved elements, because these elements may be placed in a limited
volume. In these references, the methodology of boundary integral equations has been applied to analyse the elastic wave
propagation in compound thin-walled structures with continuous inclusions. The level of suppression of the wave
propagation is controlled by a number of the ‘periodicity cells’ embedded in a wave guide. As is shown, there is an excellent
agreement between the Floquet theory predictions and the results of the energy transmission analysis in the considered
semi-infinite compound structures.

2.5. The boundary integral equations method

In the present paper, we employ the boundary integral equations method as a tool for analysis of free and forced
vibrations of finite or infinite uniform and compound piping systems. This method has been used by one of the coauthors
for analysis of linear time harmonic motion of various quasi-one-dimensional wave guides (homogeneous beams,
sandwich beams, homogeneous cylindrical shells—each of which both with and without heavy fluid loading) in a number
of publications. This method has several characteristic features, which are summarized as follows. The boundary integral
equations method for one dimensional domains yields algebraic rather than integral governing equations, and, therefore, it
gives the exact solution of any one-dimensional problem. It is equally applicable for solving problems in the time harmonic
response of infinitely long uniform structures and of structures composed of continuous segments with different
properties. This method is equally applicable to consider travelling waves in infinite/semi-infinite structures and standing
waves in structures of finite dimensions. Inasmuch as Green’s matrices are set up with the radiation and decay conditions
being taken into account, the algorithm of solving problems in time-harmonic response by boundary integral equations
method is inherently stable.

3. Equations of motion of curved fluid-filled pipes

3.1. Curved fluid filled pipes

In the low-frequency range, a curved pipe can be modelled within the conventional theory of rods, which accounts for
axial deformation, torsion and flexural deformation within Bernoulli–Euler theory as described in Love [18] (see also
Wittrick [19] and Sorokin [20]). This formulation can be modified for curved pipe as suggested by Misra et al. [3], to include
forces exerted at the walls of a pipe, by the internal fluid. This modification results in following six equations of motion for
a fluid filled pipe segment:

@Ru

@s
þ

1

R
RwþPu ¼ rsAp

@2u

@t2
(1)

@Rv

@s
þPv ¼ rsAp

@2v

@t2
(2)

@Rw

@s
�

1

R
RuþPw ¼ rsAp

@2z

@t2
(3)

Rv ¼
@Ma

@s
þ

1

R
Mw�aRw (4)

Ru ¼�
@Mb

@s
þbRw (5)

@Mg

@s
�

1

R
MaþbRvþaRu ¼ rsJp

@2g
@t2

(6)

Here, Pu, Pv and Pw are ‘fluid–structure interaction’ forces. The angles of rotation due to flexure are defined in accordance
with Bernoulli–Euler theory as

a¼� @v

@s
, b¼

@u

@s
þ

w

R
(7)
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And Mb, Rw, Ma and Mg are defined in accordance with the same Bernoulli–Euler theory as

Mb ¼ EJ
@2u
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þ

1
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@s

 !
, Rw ¼ EAp
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u
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� �
(8)

Ma ¼ EJ �
@2v

@s2
þ
g
R

 !
, Mg ¼ EJp

@g
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þ

1

R

@v

@s

� �
(9)

The model formulated in [1,13] accounts for so-called ‘plug flow’ of the in effect inviscid fluid inside a pipe and, therefore,
only for the force transmission in normal direction to the inner surface of a pipe. In view of these assumptions, the fluid
velocity field is introduced as

Vf ¼
@u

@t
,
@v

@t
,Uf

� �T

(10)

Standard algebra (see Paı̈doussis [1] for details) yields the following four governing equations for the curved fluid filled
pipe:
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The pair of Eqs. (11)–(12) describes the linear in-plane (x–z-plane) flexural–longitudinal motion of the pipe. The pair of
Eqs. (13)–(14) describes the linear out-of-plane (y–z-plane) flexural–torsion motion.

As compared with equations in [1,13], the static deformation of a pipe produced by the component of pressure and the
centrifugal force ð�1=RÞ rf AiU

2
f þAipi

� �
is ignored. It restricts our analysis to the situation, when a fluid-filled pipe is

sufficiently stiff to withstand the abovementioned forcing without changing its shape. This assumption is totally realistic
for the overwhelming majority of industrial and domestic pipelines.
3.2. Dispersion diagrams

To assess the influence of the internal fluid parameters e.g., density, flow speed and internal pressure, on the linear
dynamics of a fluid filled pipe, dispersion diagrams are plotted for curved pipes with a uniform circular cross-section in
three different cases. These non-dimensional diagrams in the low frequency range are shown in Figs. 1–3 for wavenumbers
of in-plane and out-of-plane motion. In each case, one of the fluid parameters is varied while the other two are kept
constant. All the illustrated cases are for pipes where the fluid cross section area, Ai, is 10 times larger than the solid, Ap, and
the relation e between pipe curvature radius, R, and Ap is 0.1, where e is given as

e¼ do

R
, do ¼

ffiffiffiffiffiffiffiffi
4Ap

p

r
(15)

The non-dimensional ratios for fluid mass, pressure, flow speed, frequency and wavenumber are given below:

Br ¼
rf

rs

, Bp ¼
pi

E
, BU ¼

Uf

cf
, BA ¼

Ai

Ap
, BE ¼

c2
f rf

E
, X¼

odo

cs
, K ¼ kdo (16)



Fig. 1. Influence of the fluid speed on wavenumbers; flow speed ration BU varied from 0 to (10/1400) in 10 steps, BE=1000 �14002/210e9, Bp=0 and

Br=1000/7800. Geometry parameters: BA=10 and e=0.1; (a) the in-plane case and (b) the out-of-plane case.
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Solutions of linear differential equations Eqs. (11)–(14) is sought in the standard form:

uðs,tÞ ¼ Ûdo expð�iotþ iKSÞ

vðs,tÞ ¼ V̂do expð�iotþ iKSÞ

wðs,tÞ ¼ Ŵdo expð�iotþ iKSÞ

gðs,tÞ ¼ Ĉ expð�iotþ iKSÞ (17)

where the scaled coordinate is defined as

S¼
s

do
(18)

The dispersion equation for in-plane motion is

C6K6þC4K4þC3K3þC2K2þC1KþC0 ¼ 0 (19)

where Cj are given by

C6 ¼ 1þ2BA

C4 ¼�O
2
ð1þ2BAÞ�2e2ð1þ2BAÞ�16BAðBpþBEB2

UÞ

C3 ¼OBABU

ffiffiffiffiffiffiffiffiffiffiffi
BrBE

q
ð32�e2�2e2BAÞ

C2 ¼O2BAð�2e2�e2Br�16Br�2e2BABrÞ�O2
ðe2þ16Þþe4ð1þ2BAÞ



Fig. 2. Influence of internal pressure on wavenumbers; pressure ratio Bp varied from 0 to (160e5/210e9) in 10 steps, BU=0 and Br=1000/7800. Geometry

parameters: BA=10 and e=0.1; (a) the in-plane case and (b) the out-of-plane case.
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þO2BAð16Bpþ16BEB2
UÞþe

232ðBpþBABEB2
UÞ
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ðBABp�B2

ABrBEB2
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UÞ�16e4BAðBpþBEB2

UÞ (20)

and for the out-of-plane motion it is

D6K6þD4K4þD3K3þD2K2þD1KþD0 ¼ 0 (21)

Here Dj are given by
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�e2Þð1þBABrÞ (22)



Fig. 3. Influence of the fluid mass density on wavenumbers; mass density ratio Br varied from 0 to (1000/7800) in 10 steps, Bp=0 and BU=0. Geometry

parameters: BA=10 and e=0.1; (a) the in-plane case and (b) the out-of-plane case.
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In each graph, the non-dimensional fluid parameter varies from zero up to a value corresponding to a water-filled steel
pipe with the internal fluid flow speed of 10 m/s and internal static pressure of 160 bar in ten equally large steps. This is
assumed to be within the operational limits for a typical fluid-filled pipe system. To give a relevance to pipes typically used
in applications, we consider wave propagation in a pipe with the outer diameter of 60 mm, the wall thickness of 1.4 mm
and the radius of curvature, R=0.18 m in the frequency range up to 7294 Hz.

It can be seen that changes in the mass ratio Br generate a significantly larger change in location of the dispersion
curves, than changes in the pressure ratio Bp and in the flow speed ratio BU. It is therefore concluded that the influence of
the fluid flow speed and the static fluid pressure may be ignored in the further analysis. This simplifies the governing
equations, Eqs. (11)–(14), for the curved fluid filled pipe so that only underlined terms should be kept. The same is done for
the two dispersion polynomials, Eq. (20) for the in-plane motion and Eq. (22) for the out-of-plane motion, in which only
the underlined terms are taken into account.

3.3. Modal coefficients

In what follows, the non-dimensional forces, moments are defined as

R̂¼ R
1

EAp
, M̂¼M

1

EApdo
(23)

The non-dimensional displacements and rotations are expressed via their dimensional counterparts as follows:

UðSÞ ¼
uðsÞ

do
, VðSÞ ¼

vðsÞ

do
, WðSÞ ¼

wðsÞ

do

AðSÞ ¼ aðsÞ, BðSÞ ¼ bðsÞ, GðSÞ ¼ gðsÞ (24)
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With time dependence taken as, exp(� iot) the underlined part of Eqs. (11)–(14) becomes
For the in-plane motion:
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For the out-of-plane motion:
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Dispersion equations (19) and (20) with only underlined terms retained can be derived from these two systems. For each
root Kip

j of the dispersion equation (19), the solution of equations (25) and (26) is

UjðSÞ ¼ ~Uj expðiKip
j SÞ and WjðSÞ ¼ ~W j expðiKip

j SÞ (29)

The amplitudes of the tangential and the normal displacements in this wave are linked by a modal coefficient, which has a
simple explicit form:

~W j ¼ imw
j
~Uj

mw
j ¼

eKip
j ð16þðKip

j Þ
2
ð1þ2BAÞÞ

16ðKip
j Þ

2
�16O2

þe2ðKip
j Þ

2
ð1þ2BAÞ

(30)

In the framework of the employed theory, the rotation angle associated with the in-plane bending is defined by the
formula B¼ ð@U=@SÞþeW . Therefore, the modal coefficient of the in-plane rotation becomes

mb
j ¼ Kip

j þ
e2Kip

j ð16þðKip
j Þ

2
ð1þ2BAÞÞ

16ðKip
j Þ

2
�16O2

þe2ðKip
j Þ

2
ð1þ2BAÞ

(31)

Thus, the kinematic variables in the free wave of in-plane deformation, which has a wavenumber Kip
j are conveniently

described by the vector of modal coefficients mip
j :

Uj,Wj,Bj

	 
T
¼ ~Ujm

ip
j where mip

j ¼ 1, imw
j ðiKip

j þ ie mw
j Þ

j kT
(32)

The amplitude ~Uj of this wave is determined by the excitation conditions.
The in-plane deformation of a circular pipe is characterized by two force resultants and a moment resultant, see (5), (8).
Therefore, it is helpful to introduce the vector nip

j of modal coefficients of forces and moments associated with the free
wave of the given wavenumber:

R̂uj,R̂wj,M̂bj

j kT
¼ ~Ujn

ip
j where nip

j ¼

1þ2BA

16
iðKip

j Þ
3
þ ieðKip

j Þ
2mw

j

� �
�Kip

j mw
j �e

1þ2BA

16
�ðKip

j Þ
2
�eKip

j mw
j

� �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(33)

Naturally, the forces and moments are proportional to the yet unknown amplitude ~Uj.
Exactly the same procedure is applied for the set of the out-of-plane waves. For each root Kop

j of the dispersion equation
(21), the solution of equations (27)–(28) is

VjðSÞ ¼ ~V j expðiKop
j SÞ and GjðSÞ ¼ ~Gj expðiKop

j SÞ (34)

The amplitudes of the twist and the out-of-plane displacements in this wave are linked by a modal coefficient, which
has a simple explicit form:

~Gj ¼ img
j
~V j

mg
j ¼

ieðKop
j Þ

2
ð2þnÞ

K2
j þðe2�2O2

Þð1þnÞ
(35)
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Taking into account that A¼�ð@V=@SÞ, the kinematic variables in the free wave of out-of-plane deformation, which has a
wavenumber Kop

j are conveniently described by the vector of modal coefficients mop
j :

Vj,Gj,Aj

	 
T
¼ ~V jm

op
j where mop

j ¼ 1,img
j ,�iKop

j

j kT
(36)

The amplitude ~V j of this wave is determined by the excitation conditions.
The out-of-plane deformation of a circular pipe is characterized by a force resultant and two moment resultants, see (4),

(9). Therefore, it is helpful to introduce the vector nop
j of modal coefficients of forces and moments associated with the free

wave of the given wavenumber:

R̂vj,M̂gj,M̂aj

j kT
¼ ~V jn

op
j

where nop
j ¼

1þ2BA

16
iðKop

j Þ
3
�eKop

j mg
j

� �
þ

1þ2BA

16ð1þnÞ
ð�eKop

j mg
j þe

2iKop
j Þ

1þ2BA

16ð1þnÞ
ð�Kop

j mg
j þeiK

op
j Þ

1þ2BA

16
ðKop

j Þ
2
þ iemg

j

� �

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

(37)

By introducing the modal coefficients, we specify the sets of six in-plane waves and six out-of-plane waves. Their
amplitudes are determined by the excitation and the boundary conditions.

3.4. Green’s matrix

In what follows, non-dimensional distributed forces and distributed moments are defined as

Qu ¼ qu
do

EAp
, Qv ¼ qv

do

EAp
, Qw ¼ qw

do

EAp

Qa ¼ qa
1

EAp
, Qb ¼ qb

1

EAp
, Qg ¼ qg

1

EAp
(38)

When external distributed loading is taken into account, Eqs. (25)–(28) becomes

� 1þBrBA

� �
X2U ¼�

1þ2BA

16

@4U

@S4
þe @

3W

@S3

 !
�e2Uþe @W

@S
þQu�

@Qb

@S
(39)

�X2W ¼
@2W

@S2
�e @U

@S
þ

1þ2BA

16
e @

3U

@S3
þe2 @

2W

@S2

 !
þQwþeQb (40)

�ð1þBrBAÞO
2V ¼�

1þ2BA

16

@4V

@S4
�e @

2G
@S2

 !
þ

1þ2BA

16ð1þnÞ
e @

2G
@S2
�e2 @

2V

@S2

 !
þQvþ

@Qa

@S
(41)

�
1þ2BA

8
O2G¼

1þ2BA

16ð1þnÞ
@2G
@S2
þe @

2V

@S2

 !
�

1þ2BA

16
e2G�e @

2V

@S2

 !
þQg (42)

The components of Green’s matrix are defined as a response of an infinitely long structure to the excitation by a unit point
force or a unit point moment modelled by Dirac’s delta-function. The three in-plane loading cases and the three out-of-
plane loading cases are listed in Table 1 and in Table 2, in this order.

In what follows, Green’s matrices are derived for a homogenous infinitely long curved pipe. It means that its circular
centerline is thought of as a helix with the pitch angle, which is equal to zero. In the case of the forced response, it implies
that the waves travelling in the curved pipe from the excitation point in the opposite directions do not interact with each
other as if they travel on different lists of Riemann surface. This concept allows simplification to the case of a straight pipe
by letting the radius of a ring be infinitely large.
The set of loading cases is introduced with the Dirac delta-function d(S–x), which is by definition dependent on the
difference between two arguments, the coordinate of an observation point S, and the coordinate of the loading point x. It
Table 1
The three unit point load cases used for deriving the in-plane components in Green’s matrix.

Along x axis Along z axis Around y axis

Qu=d(S�n) 0 0

Qw=0 d(S�n) 0

Qb=0 0 d(S�n)



Table 2
The three unit point load cases used for deriving the out-of-plane components in Green’s matrix.

Along y axis Around z axis Around x axis

Qv=d(S�n) 0 0

Qc=0 d(S�n) 0

Qa=0 0 d(S�n)
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has to be noticed that for a homogeneous pipe of constant curvature, the components of Green’s matrices are also
dependent on the distance between the observation and the excitation points, rather than upon each of them individually.
More precisely, the arguments in the expressions for the components in Green’s matrix are the following: the distance
between observation and loading points 9S–x9, and the location of the observation point with respect to excitation point,
sgn(S–x). The latter dependence should be introduced for odd functions of the distance 9S–x9.

As mentioned before, the equations of motion for the curved pipe are split into two independent sets, one for the in-
plane case and another for the out-of plane case. The derivation of Green’s matrix is split into the derivation of its two
independent sub-matrices Gip for the in-plane case and Gop for the out-of-plane case. Green’s matrix is structured so that the
components in the same row contain the same kinematic response for all unit point loading cases listed in Tables 1 and 2.

For example, the in-plane loading by a transverse unit force along the x-axis is defined by setting Qu=d(S–x), i.e. the
internal transverse force R̂uðS�xÞ experiences the jump from 1/2 when Sox to �1/2 when S4x. Then the matrix element
Gip

11 is the displacement U(S–x) at S, Gip
21 is the displacement W(S–x) and Gip

31 is the rotation B(S–x). In the same way, the
second column in Gip is given for the Qw=d(S–x) load case and the third column is for the Qb=d(S–x) case. The components in
Gop are defined similarly. Here Qv=d(S–x) defines the first column, Qg=d(S–x) the second one and Qa=d(S–x) the third. The
first row here gives the displacement V(S–x), the second row gives rotation G(S–x) and the third row gives rotation A(S–x):

Gip
¼

Gip
11 Gip

12 Gip
13

Gip
21 Gip

22 Gip
23

Gip
31 Gip

32 Gip
33

2
6664

3
7775 (43)

Gop
¼

Gop
11 Gop

12 Gop
13

Gop
21 Gop

22 Gop
23

Gop
31 Gop

32 Gop
33

2
64

3
75 (44)

Following the same methodology as for Gip and Gop the matrices Fip and Fop describing the reaction forces and moment at S

are defined. Fip
11 gives the force R̂u at the coordinate S, Fip

21 gives R̂w, etc.

Fip
¼

Fip
11 Fip

12 Fip
13

Fip
21 Fip

22 Fip
23

Fip
31 Fip

32 Fip
33

2
6664

3
7775 (45)

Fop
¼

Fop
11 Fop

12 Fop
13

Fop
21 Fop

22 Fop
23

Fop
31 Fop

32 Fop
33

2
64

3
75 (46)

The modal coefficients for the in-plane case are collected in matrix Mip, and these coefficients for the out of plane case
are collected in Mop;

Mip
¼ mip

1 ,mip
2 ,mip

3

h i
, Mop

¼ mop
1 ,mop

2 ,mop
3


 �
(47)

The matrices Nip and Nop are generated in the same way:

Nip
¼ nip

1 ,nip
2 ,nip

3

h i
, Nop

¼ nop
1 ,nop

2 ,nop
3


 �
(48)

The nine components in each of the two Green’s matrices Gop and Gip can be presented in the general form:

Gip
klðS,xÞ � Gip

klðS�xÞ ¼
X3

j ¼ 1

Mip
kj H

ip
lj exp iKip

j 9S�x9
� �

wip
kl

Gop
kl ðS,xÞ � Gop

kl ðS�xÞ ¼
X3

j ¼ 1

Mop
kj Hop

lj exp iKop
j 9S�x9

� �
wop

kl

where

k¼ 1,2,3 and l¼ 1,2,3 (49)
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The components of the matrices vip and vop are either 1 or sgn(S–x). This choice defines whether the given component is
an odd or an even function of S–x.

The matrices Fip and Fop have similar form given as (49), where the components of the matrices uip and uop are either 1
or sgn(S–x). In the former case, the component of Fip or Fop is an even function of S–x, in the latter case, it is an odd
function:

Fip
kl ðS,xÞ � Fip

kl ðS�xÞ ¼
X3

j ¼ 1

Nip
kjH

ip
lj exp iKip

j 9S�x9
� �

jip
kl

Fop
kl ðS,xÞ � Fop

kl ðS�xÞ ¼
X3

j ¼ 1

Nop
kj Hop

lj exp iKop
j 9S�x9

� �
jop

kl

where

k¼ 1,2,3 and l¼ 1,2,3 (50)

In all the cases K1, K2 and K3 are wavenumbers which satisfy the Sommerfeld radiation conditions and the decay
conditions.

The selection of the three wavenumbers becomes clear by rewriting (17) so K=(KRe+ iKIm) and x=0, S=9S9. It should also
be observed that the dispersion polynomials for the in-plane and out-of-plane waves are of the sixth order each, and they
contain only even powers of wavenumbers:

uðs,tÞ ¼ Ûdo expð�K Im Sj jÞ cos KRe Sj j�ot
� �

þ i sin KRe Sj j�ot
� �� �

vðs,tÞ ¼ V̂do exp �K Im Sj j
� �

cos KRe Sj j�ot
� �

þ i sin KRe Sj j�ot
� �� �

wðs,tÞ ¼ Ŵdo exp �K Im Sj j
� �

cos KRe Sj j�ot
� �

þ i sin KRe Sj j�ot
� �� �

gðs,tÞ ¼ Ĝ exp �K Im Sj j
� �

cos KRe Sj j�ot
� �

þ i sin KRe Sj j�ot
� �� �

(51)

If the imaginary part of a wavenumber does not vanish, KIma0, then the decay condition is satisfied for KIm40. In the case,
when the imaginary part of a wavenumber vanishes, KIm=0, the radiation condition should be employed. This condition is
formulated with respect to the group velocity cgroup, rather than to the phase velocity of wave propagation, and it states
that the group velocity must be positive. A simple way to validate this condition is provided by the limit absorption
principle, see Sveshnikov [21] and Vainberg [22]. If the material losses are introduced, Young’s module becomes complex-
valued (Rau [23]):

Ec ¼ Eð1�iZÞ (52)

Then all wavenumbers become complex-valued, and the appropriate ones must obey the decay condition, i.e., KIm40. As
Z-0, the imaginary parts of these wavenumbers also tend to zero, KIm-0 However, their real parts remain finite
and the condition cgroup40 holds true (see [21,22]). The expression for group velocity in this case is given here
below:

ĉgroup ¼
cgroup

cs
¼

dX

dK

K Im ¼ 0

9>=
>;) ĉgroup ¼

dX

dKRe
(53)

The components of matrices Hip, Hop, vip, vop, uip and uop are determined as illustrated at Fig. 4 for the case where
Qu(S)=d(S–x), Qw(S)=0 and Qb(S)=0.

The infinitely long curved pipe is divided to the two semi-infinite segments at the loading point x. Then a unit point
force is evenly distributed between these segments and the appropriate continuity/symmetry conditions are formulated. It
means that the internal force R̂uðS�xÞ equals �1/2 at one side from the observation point, and the same force R̂uðS�xÞ
equals 1/2 at the other side to yield the required unit jump when the observation point comes across the loaded cross
section of the pipe S=x and, therefore, to balance the external unit load Qu(S)=d(S–x). This indicates that the internal
Fig. 4. The loading case Qu=d(S–x), Qw=0, Qb=0, Qv=0, Qg=0 and Qa=0. The wavy arrows designate infinitely long segments.
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force R̂uðS�xÞ is the function, which is odd with respect to S–x and discontinuous at S=x:

R̂uðS�xÞ ¼
1þ2BA

16
�
@3U

@S3
�e @

2W

@S2

 !
¼�

1

2
sgnðS�xÞ where S-x (54)

Therefore, it is necessary to choose jip
11 =sgn(S–x). The discontinuity condition (54) at the point S=x specifies the loading

case. Two additional conditions should be formulated at this point because it is necessary to determine the three
coefficients Hip

lj in Eqs. (49) and (50). These conditions are uniquely defined from the symmetry and continuity
considerations.

To secure the continuity of all other components of Green’s matrix belonging to the same load case, it is necessary to
equate to zero at S=x those, which are even functions. The components of Green’s matrix are dependent on 9S–x9, and,
therefore, their differentiation with respect to S yields multiplication by sgn(S–x). Having this in mind, the odd and the
even functions for a given loading case are easily indentified. As seen from Eq. (54), the force R̂uðS�xÞ is an odd function.
Then, obviously, the function W(S–x) in this case must be odd, whereas the function U(S–x) should be even. It suggests that
wip

11 =1 and wip
21 =sgn(S–x). The rotation angle is defined by formula (7) right, and therefore, wip

31 =sgn(S–x). Similar inspection
into the structure of Eq. (8) suggests that are jip

21 ¼ 1 and jip
31 ¼ 1. A function, which is even in its argument S–x, is by

definition continuous at S=x. A function, which is odd in its argument S–x, is continuous at S=x if and only if it equals zero
at this point. This is the way to uniquely specify the whole set of conditions at the loading point:

Fip
11 � R̂uðS�xÞ ¼�1=2sgnðS�xÞ

Gip
21 �WðS�xÞ ¼ 0 where S-x

Gip
31 � BðS�xÞ ¼ 0

8>>><
>>>:

(55)

The remaining five sets of conditions for the unit point loading cases are presented in Appendix B. The expressions for Hip,
Hop, vip, vop, uip and uop are presented in Appendix C.

3.5. Reciprocity theorem and Somigliana’s identities

The reciprocity theorem Wunderlich and Pilkey [24] is formulated here for the two loading cases of a curved pipe. The
first one (‘trial loading’) is defined as a unit point loading case from Tables 1 and 2 for the unbounded pipe, and all state
variables for this case are therefore available from Green’s matrices as described in Section 3.4. The second loading case
(‘actual loading’) is vibrations of a segment of the same pipe under given forces. The boundary conditions at its edges S=a

and S=b are also given. If the prescribed forces are absent, the problem in forced response is reduced to the problem of free
vibrations of the pipe of the given length with given boundary conditions at its edges.

For the in-plane case, the reciprocity theorem in the framework of Bernoulli–Euler theory is formulated asZ b

a
R̂wêo

wþM̂bk̂
o
b�O

2WWo�ð1þBrBAÞO
2UUo

h i
dS

¼

Z b

a
R̂

o

wêwþM̂
o

bk̂b�O
2WoW� 1þBrBA

� �
O2UoU

h i
dS (56)

For the out-of-plane case it is Z b

a
M̂gt̂o

gþM̂ak̂o
a�

1þ2BA

8
O2GGo

�ð1þBrBAÞO
2VVo

� �
dS

¼

Z b

a
M̂

o

gt̂gþM̂
o

ak̂a�
1þ2BA

8
O2GoG�ð1þBrBAÞO

2VoV

� �
dS (57)

After standard integration by parts and re-arranging the terms, reciprocity identity acquires the form of Eq. (58) for the in-
plane case and the form of Eq. (59) for the out-of-plane case.

Here is the knowledge about the equations of motion, see Eqs. (39)–(42), taken into account. By doing so are the
distributed loading terms introduced in the equations obtained by help of reciprocity as seen in the below two equations:

R̂wWoþ R̂uUoþM̂bBo
��� ���b

a
þ

Z b

a
ðQwþeQbÞW

oþ Qu�
@Qb

@S

� �
Uo dS

¼ R̂
o

wWþ R̂
o

uUþM̂
o

bB
��� ���b

a
þ

Z b

a
ðQo

wþeQ
o
b ÞWþ Qo

u�
@Qo

b

@S

 !
U dS (58)

where

B¼
@U

@S
þeW

R̂w ¼
@W

@S
�eU
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R̂u ¼
1þ2BA

16
�
@3U

@S3
�e @

2W

@S2

 !

M̂b ¼
1þ2BA

16

@2U

@S2
þe @W

@S

 !

QwþeQb ¼�
@2W

@S2
þe @U

@S
�

1þ2BA

16
e @

3U

@S3
þe2 @

2W

@S2

 !
�O2W

Qu�
@Qb

@S
¼

1þ2BA

16

@4U

@S4
þe @

3W

@S3

 !
�e @W

@S
þe2U�ð1þBrBAÞO

2U

M̂gGo
þ R̂vVoþM̂aAo

��� ���b̂
â
þ

Z b

a
QgGo

þ Qvþ
@Qa

@S

� �
Vo dS

¼ M̂
o

gWþ R̂
o

vVþM̂
o

aA
��� ���b

a
þ

Z b

a
Qo
g Gþ Qo

v þ
@Qo

a
@S

� �
V dS (59)

where

A¼�
@V

@S

M̂g ¼
1þ2BA

16 1þnð Þ

@G
@S
þe @V

@S

� �

R̂v ¼
1þ2BA

16
�
@3V

@S3
þe @G

@S

 !
þ

1þ2BA

16 1þnð Þ
e @G
@S
þe2 @V

@S

� �

M̂a ¼
1þ2BA

16
�
@2V

@S2
þeG

 !

Qg ¼�
1þ2BA

16 1þnð Þ

@2G
@S2
þe @

2V

@S2

 !
þ

1þ2BA

16
�e @

2V

@S2
þe2G

 !
�

1þ2BA

8
O2G

Qvþ
@Qa

@S
¼

1þ2BA

16

@4V

@S4
�e @

2G
@S2

 !
�

1þ2BA

16 1þnð Þ
e @

2G
@S2
þe2 @

2V

@S2

 !
�ð1þBrBAÞO

2V

The boundary state variables (displacements, rotations, forces and moments at S=a and S=b ) for the ‘trial loading’ and for
the ‘actual loading’ are contained in the reciprocity formulation, Eqs. (58) and (59). For the former case, they are explicitly
formulated via components of Green’s matrix (see Section 3.4). For the ‘actual loading’, displacements, rotations, forces and
moments at the edges are either prescribed by the boundary conditions or should be found from the boundary integral
equations.
The six Somigliana’s identities for the curved pipe segment are presented in the matrix form as given below:

uðxÞ ¼ Gða,xÞraþFða,xÞuðaÞþGðb,xÞrb�Fðb,xÞuðbÞþqðxÞ (60)

Here matrix G includes the components of Gip and Gop and matrix F includes the components of Fip and Fop. The matrices
G, F and vectors r, u and q are:

GðS,xÞ ¼

Gip
11ðS,xÞ 0 Gip

21ðS,xÞ 0 Gip
31ðS,xÞ 0

0 Gop
11ðS,xÞ 0 Gop

31ðS,xÞ 0 Gop
21ðS,xÞ

Gip
12ðS,xÞ 0 Gip

22ðS,xÞ 0 Gip
32ðS,xÞ 0

0 Gop
13ðS,xÞ 0 Gop

33ðS,x̂Þ 0 Gop
23ðS,xÞ

Gip
13ðS,xÞ 0 Gip

23ðS,xÞ 0 Gip
33ðS,xÞ 0

0 Gop
12ðS,xÞ 0 Gop

32ðS,xÞ 0 Gop
22ðS,xÞ

2
666666666664

3
777777777775

(61)

FðS,xÞ ¼

Fip
11ðS,xÞ 0 Fip

21ðS,xÞ 0 Fip
31ðS,xÞ 0

0 Fop
11ðS,xÞ 0 Fop

31ðS,xÞ 0 Fop
21ðS,xÞ

Fip
12ðS,xÞ 0 Fip

22ðS,xÞ 0 Fip
32ðS,xÞ 0

0 Fop
13ðS,xÞ 0 Fop

33ðS,xÞ 0 Fop
23ðS,xÞ

Fip
13ðS,xÞ 0 Fip

23ðS,xÞ 0 Fip
33ðS,xÞ 0

0 Fop
12ðS,xÞ 0 Fop

32ðS,xÞ 0 Fop
22ðS,xÞ

2
66666666664

3
77777777775

(62)

uðxÞ ¼ UðxÞ,VðxÞ,WðxÞ,AðxÞ,BðxÞ,GðxÞ
	 
T

(63)
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ra ¼� R̂uðaÞ,R̂vðaÞ,R̂wðaÞ,M̂aðaÞ,M̂bðaÞ,M̂gðaÞ
j kT

(64)

rb ¼ R̂uðbÞ,R̂vðbÞ,R̂wðbÞ,M̂aðbÞ,M̂bðbÞ,M̂gðbÞ
j kT

(65)

qðxÞ ¼

R b
a Qu�

@Qb

@S

� �
Gip

11ðS,xÞþðQwþeQbÞG
ip
21ðS,xÞ dS

R b
a Qvþ

@Qa

@S

� �
Gop

11ðS,xÞþQgGop
21ðS,xÞ dS

R b
a Qu�

@Qb

@S

� �
Gip

12ðS,xÞþðQwþeQbÞG
ip
22ðS,xÞ dS

R b
a Qvþ

@Qa

@S

� �
Gop

13ðS,xÞþQgGop
23ðS,xÞ dS

R b
a Qu�

@Qb

@S

� �
Gip

13ðS,xÞþðQwþeQbÞG
ip
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8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

(66)

These identities are firstly used to derive boundary integral equations as explained in Section 3.6. As soon as all
boundary state variables for the ‘actual loading’ case are found, these identities are re-used to calculate the displacements
and rotations inside the given segment of a curved pipe. Differentiation of these identities with respect to the coordinate of
the observation point x, and arrangement of derivatives in the form Eq. (62) yields the force and moment resultants inside
the segment of a pipe. It should be emphasized that this differentiation is performed in the explicitly formulated
components of Green’s matrix. Therefore, the forces and the moment are determined exactly.

3.6. Boundary integral equations

The boundary integral equations for the state variables at the boundaries S=a and S=b of a given uniform segment of the
compound pipe are obtained from Somigliana’s identities (60) by letting the observation point, x tend to the boundaries
x=a+m and x=b–m, where m-0 and aob. Thus, a system of twelve linear algebraic equations with respect to
displacements, rotations, forces and moments at S=a and S=b is obtained. In the matrix form, vectors of boundary
kinematic variables in the ‘actual’ state u(a) and u(b) are linked with the boundary forces and moments ra and rbin this
state as

uðaÞ

uðbÞ

( )
¼

Gða,aÞ Fða,xÞ9x ¼ aþm Gðb,aÞ �Fðb,aÞ

Gða,bÞ Fða,bÞ Gðb,bÞ �Fðb,xÞ9x ¼ b�m

2
4

3
5

ra

uðaÞ

rb

uðbÞ

8>>>><
>>>>:

9>>>>=
>>>>;
þ

qðaÞ

qðbÞ

( )
(67)

It is convenient to introduce the matrix:

Bs �

Gða,aÞ ðFða,xÞ
���
x ¼ aþm

�IÞ Gðb,aÞ �Fðb,aÞ

Gða,bÞ Fða,bÞ Gðb,bÞ ð�Fðb,xÞ
���
x ¼ b�m

�IÞ

2
664

3
775 (68)

Then the boundary integral equations are re-formulated as follows:

�qðaÞ

�qðbÞ

( )
¼ Bs

ra

uðaÞ

rb

uðbÞ

8>>>><
>>>>:

9>>>>=
>>>>;

(69)

In the case, when, for example b-N, boundary state variables at S=b are not introduced, and Eq. (69) becomes

�qðaÞ ¼ Gða,aÞ Fða,xÞ
���
x ¼ aþm

�I
� � ra

uðaÞ

( )
where m-0 (70)

Respectively, for the case, when a-N, Eq. (69) becomes

�qðbÞ ¼ Gðb,bÞ �Fðb,xÞ
���
x ¼ b�m

�I
� � rb

uðbÞ

( )
where m-0 (71)

It should be noted that all components of the matrix G(S,x)�G(S–x) are continuous functions of the arguments, because
they represent the displacements and rotations produced by a point force or a point moment. Off-diagonal components of
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the matrix F(S,x)�F(S–x), which represents forces and moments generated in a structure in the trial loading case, are also
continuous. However, the diagonal components of the matrix F(S,x)�F(S–x) are discontinuous functions at S=x, because
they have to capture the unit jump in the force or in the moment at this loaded point. This discontinuity is taken into
account by keeping the parameter m in the boundary equations.

3.7. Interfacial continuity conditions and boundary conditions

The curved pipe segments may be either connected to each other in a sequential manner or connected to an ‘outer’
part of assembled piping system. In the former case, the set of interfacial continuity conditions should be formulated for
all boundary state variables (displacements, rotations, forces and moments) at the interface between neighbouring
segments.

Due to the chosen sign convention for the used boundary state variables, see Eq. (72), there are the following interfacial
continuity conditions applied for all N sets of boundary states variables at the interfacial point, rj containing boundary
forces, moments and uj containing boundary displacements, rotations:

XN

j ¼ 1

rj ¼ 0 and uj�ujþ1 ¼ 0 (72)

The number of interfacial conditions is hereafter easily found as 6+6 � (N–1).
For the end segment of a pipe connected, say, to a radiator or a boiler, the set of conventional boundary conditions

should be formulated. As seen in Eqs. (58) and (59), the boundary conditions for the in-plane deformation are formulated
for the linear combinations of the following pairs R̂w and W; R̂u and U; M̂b and B. For the out-on-plane deformation, the
pairs are M̂g and G; R̂v and V; M̂a and A.

3.8. The global system of linear algebraic equations for a compound curved pipe

Eqs. (69)–(71) are assembled with the given boundary and interfacial conditions into the following global system of
linear algebraic equations describing the dynamics of a compound pipe system:

Bc¼ q (73)

Solution of this system for c yields all boundary states variables in the ‘actual loading’ case for each segment. The
displacements in each segment are then calculated straightforwardly by means of exact Somigliana’s identities as
described in the previous subsection.

The matrix–vector formulation presented in Eq. (69) can readily be transformed into the standard dynamical stiffness
matrix form:

Z�1
qðaÞ

qðbÞ

( )
þ

ra

rb

( )
¼ ð�Z�1YÞ

uðaÞ

uðbÞ

( )

where

Z¼
Gða,aÞ Gðb,aÞ

Gða,bÞ Gðb,bÞ

" #
Y¼

ðFða,xÞ
���
x ¼ aþm

�IÞ �Fðb,aÞ
���

Fða,bÞ ð�Fðb,xÞ
���
x ¼ b�m

�IÞ

2
664

3
775 (74)

for m-0
The matrix (�Z�1Y) in Eq. (67) is the standard dynamical stiffness matrix. It is derived with the use of Green’s matrix

which satisfies the radiation and the decay conditions. This formulation of the dynamical stiffness matrix does not contain
exponentially growing elements. It guarantees the numerical stability of computations.

3.9. Floquet theory formulation

An infinitely long periodic compound structure consisting of two or more alternating identical elements is considered.
The equations of its free time-harmonic motion have the form of an infinitely large system of assembled boundary integral
equations, which can be recognised as a periodic system of linear equations. The periodically repeated part of this equation
system is the following sub-matrix system, where n 2 Z:

0¼

J I 0

Ba Bc Bb

0 J I

2
64

3
75

bn�1

an

cn

bn

anþ1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

where J¼
I 0

0 �I

� �
(75)
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Here an and bn are vectors containing boundary state variables on each side of the ‘n periodicity cell’ and cn contains
its inner boundary state variables. Matrix [Ba, Bc, Bb] describes the assembled boundary integral equation matrix for
such a single ‘periodic cell’. As is known, a solution of a periodic linear system may be formulated as follows ([13–15,25]):

xn ¼ xn�m expðmiKBÞ where xn ¼ bT
n�1, aT

n, cT
n, bT

n, aT
nþ1

j kT
(76)

In this formula, KB is a propagation constant (Bloch parameter). The following equations may be written for three
consecutive segments:

l1

bn�2

an�1

cn�1

bn�1

an

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ l0

bn�1

an

cn

bn

anþ1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ l�1

bn

anþ1

cnþ1

bnþ1

anþ2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

where lm
¼ expðmiKBÞ, m 2 Z (77)

Then it is possible to reformulate Eq. (75) as follows:
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0 J I

2
64

3
75

l�1bn

an

cn

bn

lan

8>>>>>><
>>>>>>:
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9>=
>; (78)

The vectors an and bn contains twelve components: three forces, three moments, three rotations and three displacements.
Thus, the eigenvalue problem with respect to l is, in effect, a problem of finding complex roots of a twelfth-order
polynomial:

C1l
12
þC2l

11
þ � � � þC11l

2
þC12lþC13 ¼ 0 (79)

The parameter l is expressed via propagation constant as

l¼ expðiKBÞ ¼ expð-K Im
B Þ cosðKRe

B Þþ i sinðKRe
B Þ

� �
(80)

The free wave propagation is impossible and filtering effect is achieved when all the 12 solutions fulfil the condition
that 9l9a1.

3.10. Power flow

Power flow in the structure performing time harmonic motion at the frequency o is defined by following expression
Miller and von Flotow [26], where ‘‘n’’ indicates the complex conjugate function:

~EfluxðsÞ ¼
1
2 ReðRuðsÞð�ioÞuðsÞ*Þþ1

2ReðRvðsÞð�ioÞvðsÞ*Þ
þ1

2 ReðRwðsÞð�ioÞwðsÞ*Þþ1
2ReðMaðsÞð�ioÞ � aðsÞ*Þ

þ1
2 ReðMbðsÞð�ioÞbðsÞ*Þþ1

2ReðMgðsÞð�ioÞgðsÞ*Þ (81)

It is a sum of six components which present contributions of longitudinal deformation, torsion and flexural deformation in
two coordinate planes.

4. Standing and travelling waves in compound curved pipes

A number of examples of application of the described method of boundary integral equations are presented in this
section. These examples are split into two categories: the eigenfrequency analysis of vibration of structures of the finite
length and the power flow analysis in infinitely long structures.

4.1. Eigenfrequency analysis

In the case of free vibrations, the ‘actual loading’ case is represented as the absence of driving forces, q=0 in Eq. (73),
which then becomes

Bc¼ 0 (82)

Examples of calculations of eigenfrequencis are concerned with free in-plane and out-of-plan of planar vibrations of a
single uniform segment of a curved pipe, see Fig. A.1. The eigenfrequencies of in-plane and out-of-plane motion are
presented in the same non-dimensional form as used in Knag et al. [5] and Lee et al.[6], see Eq. (83) where the values for
radius of gyration, c and Poisson ratio n are listed. In these references, the used non-dimensional eigenfrequencies O0 of the
in-plane vibrations are reported, and the comparison is summarized in Table 3. Furthermore, commercial FE package



Table 4
Non-dimensional eigenfrequencies of out-of-plane vibrations: boundary integral equation versus results obtained by use of ANSYS11 with beam44

elements.

Mode Boundary integral eq. ANSYS11 beam44 Boundary integral eq. ANSYS11 beam44

Out-of-plane non-dim. eigenfrq., O0 , for a segment with 51 angle of

opening, free–free bc.

Out-of-plane non-dim. eigenfrq., O0 , for a segment with 51 angle of opening,

clamped–clamped bc.

1 774.0281 773.6 773.5448 773.5

2 1545.9006 1547.5 1546.7551 1546.7

3 2319.8549 2332.0 2319.6938 2320.6

4 2938.3143 2868.0 2938.4395 2917.2

Out-of-plane non-dim. eigenfrq., O0 , for a segment with 1801 angle of

opening, free–free bc.

Out-of-plane non-dim. eigenfrq., O0 , for a segment with 1801 angle of

opening, clamped–clamped bc.

1 4.119485 4.0993 1.817661 1.8167

2 9.105379 9.0329 5.237223 5.2270

3 16.935268 16.7430 10.987080 10.9420

4 21.293283 21.2010 18.834997 18.7010

Table 3
Non-dimensional eigenfrequencies of the in-plane vibrations: boundary integral equation versus results reported in Knag et al. [5] and Lee et al. [6].

Mode Boundary integral eq. (Love’s gov. eq.) Kang et al. (Love’s gov. eq.) Lee et al. (Flügge’s gov. eq.)

In-plane non-dim. eigenfrq., O0 , for a segment with 51 angle of opening, clamped-clamped bc.

1 1247.5675 1247.5675 1247.0700

2 2489.7481 2489.7481 2493.9590

3 2942.5805 – 2937.7038

4 3740.4334 3740.4334 3741.2092

In-plane non-dim. eigenfrq., O0 , for a segment with 51 angle of opening, free–free bc.

1 1247.1131 1247.1131 1247.4466

2 2493.9771 2493.9771 2494.2896

3 2937.7679 2937.7679 2937.2384

4 3741.4749 3741.4749 3741.4112

In-plane non-dim. eigenfrq., O0 , for a segment with 1801 angle of opening, clamped–clamped bc.

1 4.3694551 4.3694551 4.3721593

2 9.4982704 9.4982704 9.5078102

3 17.7040140 17.704014 17.722215

4 25.6417085 25.641709 25.668470

In-plane non-dim. eigenfrq., O0 , for a segment with 1801 angle of opening, free–free bc.

1 1.8363460 1.8363460 1.8371547

2 5.3028579 5.3028579 5.3078041

3 11.0999717 11.099972 11.111971

4 18.9884643 18.988464 19.010617
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ANSYS11 has been used for calculations of the non-dimensional eigenfrequencies of the out-of-plane free vibrations of the
same structures, and comparison is summarized in Table 4:

Ou¼
o R2

c cs
where c¼

ffiffiffiffiffiffi
J

Ap

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1200

r
, R¼ 1 and n¼ 0:3 (83)

The eigenfrequencies are calculated for uniform segments with 51 and 1801 angles of opening for the two sets of boundary
conditions: ‘clamped–clamped‘ and ‘free–free’.
The third example of the eigenfrequency analysis is more involved. It is concerned with calculations of eigenfrequencies of
a spatial system where in-plane and out-of-plane motion cannot be separated. This structure has the shape of an ‘elastic
hook’ made of an empty pipe with the outer diameter of 30 and 2 mm wall thickness, see Fig. 5. The results obtained by
using boundary integral equations method are given in Table 5, together with the results obtained by the commercial FEM
code, ANSYS11 using its beam44 elements, with the shear correction factor taken as ks=0.56, see Eq. (84) [27]. Note that
the largest discrepancy between the eigenfrequencies is 1.5 percent:

ks ¼
6ð1þnÞð1þmÞ2

ð7þ6nÞð1þmÞ2þð20þ12nÞm2
where m¼

do�2h

do
(84)



Fig. 6. The U-shaped pipe, pipe diameter 30 mm and wall thickness 2 mm, rs=7800 kg/m3, rf=1000 kg/m3, E=210 GPa and n=0.3. The wavy arrows

designate infinitely long segments.

0.24m R0.12m

0.5m

Fig. 5. The ‘elastic hook’. Parameters of a curved pipe: diameter of 30 mm and a wall thickness of 2 mm, rs=7800 kg/m3, E=210 GPa and n=0.3.

Table 5
The first 20 eigenfrequencies found by the commercial FEM code ANSYS’ with beam44 elements and by the boundary integral equations method, BIE, for

the geometry at Fig. 5.

FEM (Hz) 8.492 26.04 26.23 30.90 55.72 103.4 107.7 163.0 190.2 240.3
BIE (Hz) 8.498 26.05 26.24 30.98 55.83 103.6 107.9 163.5 190.8 241.5
FEM (Hz) 272.0 336.9 343.5 407.6 424.9 449.1 531.4 627.9 764.5 784.9
BIE (Hz) 273.3 339.0 345.4 410.8 427.9 453.4 536.1 636.0 776.0 794.2
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These examples demonstrate validity of the methodology employed in this paper and they serve as a verification of the
codes, which implement this methodology. A simple modification of the codes is requested to address the power flow
analysis in an infinite or semi-infinite piping system considered in Section 4.2.

4.2. Power flow analysis

In the case, when harmonic external forces are applied to the structure, Eq. (73) acquires the left hand side. For an
infinite structure and for a finite structure with material losses taken into account, the determinant of this system of linear
algebraic equations cannot vanish, and it has a unique solution, which defines the forced response: the whole set of state
variables at the edges of each segment of a compound pipe. Then displacements, rotations, forces and moments in an
arbitrary cross section of a pipe are readily available by employing the Somigliana’s identities as described in Section 3.5. It
facilitates the use of Eq. (60) to calculate the power flow through a set of selected cross sections in given excitation
conditions.

In industrial and domestic piping systems, curved pipe segments are used in combination with the straight segments to
control the global shape of a system. Typically, all segments of the piping system have the same outer diameter and wall
thickness, so that the shape of a piping line is controlled by the curvature and the angle of opening of curved segments.

To illustrate the influence of discontinuities in the curvature of a pipe on its wave guide behaviour, the power flow in an
U-shaped pipe, see Fig. 6, and in a S-shaped pipe system, see Fig. 7, are compared. Calculations are done in the frequency
range from 1 to 1900 Hz. The results are given for a water filled pipe with an outer diameter of 30 mm and a wall thickness
of 2 mm. The excitation by a vertical force and by the horizontal force is considered separately, both with amplitude of
10 N, see Figs. 6 and 7. The vertical force generates the out-of-plane motion which involves out-of-plane flexural
deformation and torsion. The horizontal force produces the in-plane motion which involves in-plane flexural deformation
and axial deformation.

The power flow in the structures sketched at Figs. 6 and 7 is presented in the ‘insertion loss’ (IL) format, where
the power flow is a compound structure is scaled by the power flow in the reference structure. In this case, the



Fig. 7. The S-shaped pipe, pipe diameter 30 mm and wall thickness 2 mm, rs=7800 kg/m3, rf=1000 kg/m3, E=210 GPa and n=0.3. The wavy arrows

designate infinitely long segments.

Fig. 8. The frequency-dependence of IL for the U-shaped pipe illustrated on Fig. 6: in-plane case solid line and out-of-plane dashed line.

Fig. 9. The frequency-dependence of IL for the S-shaped pipe illustrated in Fig. 7: in-plane case solid line and out-of-plane dashed line.
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reference is provided by the power flow in a straight uniform water-filled pipe of the same parameters. This quantity is
introduced as

IL dB

 �

¼ 10log
~Eref

~Esystem

 !
(85)

Here the reference power flow ~Eref is readily available from a well known Green’s function for flexural wave motion
of a straight uniform pipe. Obviously, this reference is the same for the in-plane and out-of-plane excitation of
U- and S-shaped pipe. The frequency-dependence of the IL for the U-shaped pipe is given in Fig. 8 and for the S-shaped
pipe in Fig. 9.

The arrows in Figs. 8 and 9 designate the cut on and cut off frequencies, with the solid arrow for the in-plane case and
the dashed arrow for the out-of-plane case. As a reference, the dispersion diagrams for curved segments are plotted in
Fig. 10 (the ‘in-plane’ wavenumbers) and Fig. 11 (the ‘out-of-plane’ wavenumbers).

The differences between the U-shaped and the S-shaped models are most pronounced at low frequencies up to 25 Hz
for the in-plane case and up to 35 Hz for the out-of-plane case. The S-shaped pipe has three discontinuities in the
curvature, including the change of the sign, whereas the U-shaped pipe has two discontinuities. The fluctuations in



Fig. 11. Dimensional dispersion diagram (the out-of-plane case) for the curved pipe water filled segment used in the models shown in Figs. 6 and 7: real

part solid line and imaginary part dashed line.

Fig. 10. Dimensional dispersion diagram (the in-plane case) for the curved pipe water filled segment used in the models shown in Figs. 6 and 7: real part

solid line and imaginary part dashed line.
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insertion loss are larger for the S-shaped pipe than for the U-shaped pipe. This indicates that the IL is more sensitive to the
number of ‘jumps’ in curvature than to the length of curved segments.

At higher frequencies, this difference as well as the difference between the in-plane and the out-of-plane excitation
diminishes. Furthermore, the magnitude or IL tends to zero, because the wavelengths become small in comparison with
the radius of the segments. This tendency is seen most clearly when the excitation frequency get up in the domain where
there both are travelling transversal and longitudinal/torsion waves, i.e. the frequencies right to both arrows.
5. Waves in periodic curved pipes

In this section, we consider three types of structures. In each case, however, a structure contains the same repeated
spatial segments, which, in turn are composed of curved and straight pipe elements. To apply the Floquet theory and find
propagation constants, the idealized model of an infinitely long structure is considered first. This modelling defines
location of stop bands in the frequency domain. Next, we consider infinite structures composed of exactly the same
segments as in the previous case, but the number of these repeated segments is fairly small. The ‘outer’ part of a piping
system is then modelled as a simple straight pipe. The power flow analysis in the case of forced vibration is performed by
means of the boundary integral equations method in the frequency range that covers pass bands and stop bands predicted
by the Floquet theory. We are particularly concerned with the comparison of attenuation levels achieved with adding
periodicity cell one by one. Finally, we consider forced vibrations of a structure of a finite length with no material losses by
means of boundary integral equation method and by standard FE package ANSYS. At this stage, the point is to compare the
shapes of standing waves, when the excitation frequency lies in the pass band or in the stop bands predicted by the Floquet
theory for an unbounded structure.
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5.1. Boundary integral equation method and Floquet theory—travelling wave analysis

A periodic structure consisting of curved and straight pipe segments shown in Fig. 12 is considered. The frequency
dependence of the parameters 9l9 introduced as Eq. (79) is shown in Fig. 13. In accordance with the Floquet theory, the
location of the frequency stop bands is defined by the condition 9l9a1 held for all twelve roots of the characteristic
equation (79). These predictions are compared with the power flow analysis, when a finite number of repeated
substructures are inserted into an infinitely long structure.

The power flow in the structure shown in Fig. 14 versus excitation frequency is presented in Fig. 15 for variable number
of the ‘periodicity cells’ inserted into a straight pipe. The stop band filter consists of two to eight chosen repeated
substructures.

Here the concept of insertion losses is used again, see Eq. (85). The reference solution for the following examples is
provided by the energy flux through a single periodic cell inserted in an otherwise uniform infinitely long water filled pipe.
The power flow analysis is here performed for frequencies in between 1 and 955 Hz.

As it can be seen in the graphs in Fig. 15, the performance of the stop band filter is not much improved when the
number of ‘periodicity cells’ becomes larger than five. On the other hand, it is notably to see that only two repeated
substructures already gives a noticeable attenuation effect in several frequency stop bands. The stop bands predicted by
the Floquet theory are marked as grey strips in Figs. 15 and 16. When looking at the graphs crossing the by grey bands
marked stop-bands at Fig. 15, are the by Floquet theory idealized exponential decay rate per repeated ‘periodic cell’ clearly
indicated, even for a relatively low number of repeated ‘periodic cells’.
Fig. 13. The magnitude of 9l9 versus excitation frequency, stop bands are identified by condition 9l9a1.

Fig. 14. An infinitely long pipe with the eight ‘periodicity cells’ inserted; pipe diameter 30 mm and wall thickness 2 mm, rs=7800 kg/m3, rf=1000 kg/m3,

E=210 GPa and n=0.3. The wavy arrows designate infinitely long segments.

Fig. 12. The pipe segments used as the periodic repeated substructure; pipe diameter 30 mm and wall thickness 2 mm, rs=7800 kg/m3, rf=1000 kg/m3,

E=210 GPa and n=0.3.
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Fig. 15. Insertion losses in a pipe with variable number of inserted ‘periodicity cells’. The grey strips indicate Floquet-predicted stop bands.
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To illustrate the effect of structural damping on stop bands predicted by the Floquet theory, the power flow in several
periodic pipes which have different magnitudes of the material losses is calculated. In these calculations, the standard
model of materials losses as a complex Young’s modulus defined by the loss factor, Z given by Eq. (52) is employed. The
analysis is performed for the pipe with five ‘periodicity cells’ shown in Fig. 12. Material losses are disregarded in the ‘outer’
infinitely long straight segments of the pipeline. As it can be seen in Fig. 16, for relatively small rates of structural damping,
Zo10�3, there is no significant change in the obtained stop-band behaviour. It can also be seen that when the damping
ratio of Z becomes large, the stop-band effect is masked by the overall damping.

The effect of repeated ‘periodicity cells’ in generation of frequency stop bands in an infinitely long structure is explained
by the phenomenon of interference of waves reflected by these cells. In the case of forced response of a periodic infinite
structure, this interference dramatically reduces its admittance. It results in the reduction of the energy input into the
system and, therefore, in the suppression of travelling waves. However, the periodicity effect is also observed in the case of
forced vibrations of a finite structure with no material losses.

5.2. Floquet theory and FE method—standing wave analysis

Forced vibrations of the structure shown in Fig. 17 are analysed by the Floquet theory and by the finite element code
ANSYS11 using its beam44 elements where the shear stress factor is chosen to ks=0.56, see Eq. (84) [27]. As already
mentioned, the formulation of the Floquet theory involves the boundary integral equation method.
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Fig. 19. Shapes of standing waves in the simple supported beam illustrated in Fig. 17, seen from side and top view, modelled by help of ANSYS11 with

beam44 elements.
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Fig. 17. The simple supported empty pipe with five periodicity cells inserted.

Fig. 18. The magnitude of 9l9 versus excitation frequency, stop-bands are identified by condition 9l9a1.
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The simply supported beam is loaded by a point harmonic force at the distance 3 m from its left end. The force has the
10 N amplitude of components in each direction of the coordinate system. For the power flow in an infinitely long periodic
structure, the Floquet theory predicts stop bands in the frequency ranges shown in Fig. 18. The shapes of forced vibrations
(the shape of standing waves) for the excitation frequencies inside and outside stop bands obtained by the finite element
method are shown in Fig. 19. As is seen, the excitation inside the stop bands generates the standing waves strongly
localised between the left edge and the periodic inclusion. If the excitation frequency is not in the stop band, then the
forced vibrations are such that the whole pipe is involved in the harmonic motion. The element length is here set to 0.02 m.
These standing wave shapes are calculated for two excitation frequencies inside the predicted stop-bands 580 and 810 Hz
and two outside 450 and 650 Hz, see Fig. 18.

5.3. Parametric study

As discussed in the previous sub-sections, insertion of several ‘periodicity cells’ shown in Fig. 12 in a straight pipe
produces strong effect of suppression of wave propagation in an infinitely long structure and strong localisation effect in
the shape of forced vibrations of a structure of finite length. This ‘periodicity cell’ has several geometry parameters, which
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Fig. 21. Pass band 9l9=1 (shadowed) and stop bands 9l9a1 (non-shadowed) for an infinitely long pipe: (a) an empty pipe and (b) a water-filled pipe,

rf=1000 kg/m3.
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�

Fig. 20. The pipe segment employed as a periodicity cell. Radius of curvature is kept constant while angle of curvature y are varied. Pipe diameter 30 mm

and wall thickness 2 mm, rs=7800 kg/m3, E=210 GPa and n=0.3.
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may readily be tuned to produce the attenuation effect in prescribed frequency ranges. To illustrate possibility to tailor the
location of the frequency stop bands, their boundaries, defined by the condition 9l9=1 are plotted in Figs. 20 and 21 for a
pipe with and without water inside. In this figure, the pairs of the frequency and the angle of the opening of the segment,
which fall into a stop band, are non-shadowed. In opposite, the combinations of these two parameters, which do not
produce a stop band effect, are located in the shadowed zones.
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As it is seen, tailoring of stop bands to the prescribed excitation frequencies is feasible by changing the geometry of the
implemented sub-structure. Therefore, the stop-band effect can be used as a tool of passive control of vibrations in the
piping system. It should be noted that the stop-band behaviour is not too sensitive to small changes in angle of curvature of
the curved segments. The same holds true as regards the effect of fluid loading.

6. Conclusions

The findings reported in the paper are summarized as follows:
�
 location of dispersion curves for fluid-filled elastic pipes with parameters relevant to industrial and domestic piping
system is weakly affected by the pressurization and by the velocity of the fluid. Therefore, the mass density appears to
be the dominant fluid parameter for relatively stiff pipes filled with an inviscid fluid in the low frequency domain.

�
 the boundary integral equation method can be reliably used to model forced and free vibrations of compound arbitrary

shaped structures with straight and curved pipe segments. Its predictions are shown to be in excellent agreement with
the results of the eigenfrequency analysis by the commercial finite elements program ANSYS 11 and with previously
published results for curved beams.

�
 insertion of a relatively small number of ‘periodicity cells’ in otherwise straight pipe produces a substantial attenuation

of the power flow effect in the frequency ranges predicted by the classical Floquet theory for an infinitely periodic
structure. The level of insertion losses tends to grow uniformly with the increase in the number of the periodicity cells.
The material losses, when sufficiently large, mask the periodicity effect, rather than obscure it.

�
 the shape of standing wave in forced vibrations of a piping system of a finite length with several repeated ‘periodicity

cells’ is strongly localised in the loaded span between the edge and periodic insertion when the excitation frequency
falls into a stop band predicted by the classical Floquet theory. Otherwise, the amplitudes of forces vibrations have the
same magnitudes along the whole pipe.

�
 it is feasible to tailor the filtering characteristics of a periodic insert in the frequency domain by varying parameters of

geometry of a periodicity cell, such as the angle of opening of the curved segments and the length of segments. The level
of attenuation is controlled by the number of periodicity cells and, therefore, can also be tuned to attain the required
levels. This facilitates optimization of attenuation characteristics of the inserts, which lies beyond the scope of the
present paper, but constitutes the subject of on-going research of the authors.
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Appendix A

The system of coordinates and the sign convention Figs. A.1–A.4.

Appendix B

The six unit point loading conditions
The considerations of the symmetry with respect to the loading point x yield the following loading conditions for two

semi-infinitely segments in the six unit point load cases.
Fig. A1. The coordinate system.



Fig. A3. The sign convention for moments.

Fig. A4. The sign convention for pressure forces acting on a fluid segment.

Fig. A2. The sign convention for forces.
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For the three in-plane unit point load cases:
1.
(B.1)
Unit point load case along x-axis at x:

QuðSÞ ¼ dðS�xÞ,QwðSÞ ¼ 0,QbðSÞ ¼ 0
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Gip
31 ¼ BðSÞ ¼ 0

8>>>><
>>>>:

Unit point load case along z-axis at x:
2.
(B.2)
QuðSÞ ¼ 0,QwðSÞ ¼ dðS�xÞ,q̂bðSÞ ¼ 0

+

R̂wðSÞ ¼
@W
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�eU ¼�1
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sgnðS�xÞ where S-x
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Gip
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31 ¼ M̂bðSÞ ¼ 0
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Unit point load case around y-axis at x:
3.
(B.3)
QuðSÞ ¼ 0,QwðSÞ ¼ 0,QbðSÞ ¼ dðS�xÞ

+

M̂bðSÞ ¼
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For the three in-plane unit point load cases:

1.
(B.4)
Unit point load case along y-axis at x:

QvðSÞ ¼ dðS�xÞ,QgðSÞ ¼ 0,QaðSÞ ¼ 0
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where S-x
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Unit point load case around z-axis at x:
2.
(B.5)
QvðSÞ ¼ 0, QgðSÞ ¼ dðS�xÞ,QaðSÞ ¼ 0
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Unit point load case around x-axis at x:
3.
(B.6)
QvðSÞ ¼ 0,QgðSÞ ¼ 0,QaðSÞ ¼ dðS�xÞ
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Appendix C

Expressions for Hip, Hop, vip, vop, uip and uop in Green’s matrix
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The components in matrix Hip for the In-plane case:
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The components in matrix Hop for the out-of-plane case:
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Matrix vip for the in-plane case:

vip ¼

1 sgnðS�xÞ sgnðS�xÞ
sgnðS�xÞ 1 1

sgnðS�xÞ 1 1

2
64

3
75 (C.19)

Matrix vop for the out-of-plane case:

vop ¼

1 1 sgnðS�xÞ
1 1 sgnðS�xÞ

sgnðS�xÞ sgnðS�xÞ 1

2
64

3
75 (C.20)

Matrix uip for the in-plane case:

uip ¼

sgnðS�xÞ 1 1

1 sgnðS�xÞ sgnðS�xÞ
1 sgnðS�xÞ sgnðS�xÞ

2
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3
75 (C.21)

Matrix uop for the out-of-plane case:

uop ¼

sgnðS�xÞ sgnðS�xÞ 1

sgnðS�xÞ sgnðS�xÞ 1

1 1 sgnðS�xÞ

2
64

3
75 (C.22)
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